Hydrogen from Biomass

UKCCSRC Web Event with IMechE: Hydrogen Production with Carbon Capture and Storage

04 November 2021

Stephen Florence
Senior Engineer – Energy Transition
Contents

– Advanced Gasification Technologies Study
– Biomass to Hydrogen Process Overview
– Opportunities
– Barriers
– Conclusions
Advanced Gasification Technologies Study

AGT Study

- Advanced Gasification Technologies converting biomass and municipal solid waste to a range of fuel products: Hydrogen, Methane, Methanol, Fischer-Tropsch fuels
- Review of Current Status of AGT
- Review of Next Generation AGT
- Techno-Economic Analysis
- Focus on Opportunities and Barriers

Key Messages

- CO₂ balance should be studied further
- Realistic approach to feedstock availability and utilisation is required
- Technology is still at developmental stage

Advanced Gasification Technology Study

Biomass to Hydrogen Process Overview

- Biomass
- Feedstock Preparation
- Gasification
 - O_2
- Syngas Treatment
 - CO_2
- Water Gas Shift
- Purification
- H_2
Biomass to Hydrogen Process Overview

Typically includes as a minimum:
• Shredding
• Metals Separation
• Inerts Separation
• Drying

Feedstock Preparation ➔ Gasification ➔ Syngas Treatment ➔ Water Gas Shift ➔ Purification ➔ H_2

O_2 ➔ CO_2

Cheaper Feedstock ➔ Increased Contamination ➔ Increased Complexity ➔ Increased Risk
Biomass to Hydrogen Process Overview

\[C_nH_m + O_2 + \text{Steam} \rightarrow CO + H_2 + \text{Steam} \]
Biomass to Hydrogen Process Overview

Treatment systems can include:
1. plasma conversion;
2. high efficiency cyclones for collection of entrained particulates and droplets of hydrocarbons;
3. wet scrubbing for the removal of entrained particulate matter, tars and NH₃;
4. activated carbon beds for adsorption of metals;
5. hydrolysis reactors for the reduction of COS, HCN and unsaturated hydrocarbons; and
6. amine scrubber for the removal of CO₂ and some acid gases.
Biomass to Hydrogen Process Overview

CO + H$_2$O \rightarrow CO$_2$ + H$_2$

Low Temperature (200°C) - cobalt-molybdenum catalysts
High Temperature (500°C) - chromium or copper promoted iron oxide catalysts

CO$_2$ removal from shifted syngas by solvent based process, produces concentrated >90% stream
Biomass to Hydrogen Process Overview

- Feedstock Preparation
- Gasification
- Syngas Treatment
- Water Gas Shift
- Purification

Flow Diagram:

Biomass → Feedstock Preparation → Gasification → Syngas Treatment → Water Gas Shift → Purification → H₂

- Pressure Swing Adsorption
- Further purification as required
Biomass to Hydrogen AGT Developers

- Kew Technology
 - Feedstock – Densified RDF
 - Gasifier – Fluidised Bed
 - Product – Hydrogen, Electricity & Liquid Fuel
 - TRL - 6

- PowerHouse Energy Group
 - Feedstock – RDF, SRF & Mixed Plastics
 - Gasifier – Rotary Kiln
 - Product – Hydrogen & Electricity
 - TRL - 6
Opportunities

- Production of Low Carbon Hydrogen
- Carbon Negative Technology
Barriers

- Supply of sustainable biomass
- Conversion efficiency
- Product purity
- Product certification
- Value of CO$_2$
- Availability of technology
- Economics
Techno-Economic Analysis: Levelised Cost of Hydrogen

Figure 7: LCOH for biomass and waste with capture of the rich CO₂ stream
Conclusions

– Does this technology have potential to be part of the future energy system?
 Yes

– Will it solve all our problems?
 No, sustainable feedstock supply is limited and has other uses

– What is the technology for?
 Low Carbon Hydrogen? CO₂ Capture from atmosphere? Which will be the main revenue is unclear.
Any Questions?

Stephen Florence
stephen.florence@aecom.com

Delivering a better world