Best Available Techniques for 'Blue' Hydrogen Production with Carbon Capture and Storage

Jane Durling Senior Advisor – Energy Team Radioactive Substances and Industry Regulation

02/11/21

Best Available Techniques for 'Blue' Hydrogen Production with Carbon Capture and Storage

- What are BAT best available techniques?
- BAT guidance
 - When is BAT guidance needed?
 - Criteria for determining BAT
 - Development process
- Summary of Process Inputs/Outputs
- Key points for guidance
 - Configuration Choice
 - Performance
- Next Steps
- Published Guidance
- BAT and the Hydrogen Strategy
- Future guidance
- Questions?

What are BAT?

- 'Best Available Techniques' *
 - economically and technically viable techniques
 - best for preventing or minimising emissions and impacts on the environment as a whole

* Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) (europa.eu)

BAT Guidance

When is BAT guidance needed?

- Where no relevant BAT reference document (BRef)
- Regulator must set permit conditions following Art.14(6)
- Must consider criteria for determining BAT in Annex III
- Permit conditions must protect the environment
 - basic obligations of the operator (Art 11)
 - environmental quality standards (Art.18)
- Encourage emerging techniques (Art. 27)

BAT Guidance

Criteria for determining best available techniques (IED Annex III)

- Available to be implemented economically/technically viable at scale
- Emissions to air/water/land including heat,vibrations,noise – effects/quantity
- Low waste maximise recovery/recycling
- Less hazardous substances
- Energy efficiency
- Raw material/water usage
- Prevent/reduce overall impact
- Prevent/minimise consequences of accidents
- Take account of published information international

BAT Guidance

Development Process

- BAT review informs BAT guidance
- Summarises the evidence for available process options
- Identifies key environmental issues to address & best practice
- In consultation with industry & agreed by UK regulators
- Assists applicants & regulators in the permit process
- Does not set BAT standards or limits
- Permit conditions generate evidence for future BAT standards

'Blue' Hydrogen Production Technologies Identified

- Steam Methane Reforming (SMR)
- Autothermal Reforming (ATR)
- Gas Heated Reforming (GHR) e.g. GHR+ATR or GHR+SMR combined
- Partial Oxidation (POX)

* All will need Carbon Capture and Storage (CCS)

Summary of Process inputs/outputs

Key Points for Guidance – CO₂ Capture Efficiency

- Overall CO₂ Capture Efficiency >95%
 - Feed gas energy conversion
 - Impact on total CO_2 to be captured from process
 - Capture rate
 - Near complete for process CO₂ capture
 - Post combustion capture >95%
 - CH₄, CO and CO₂ left in hydrogen purification tail gas used as fuel
 - Conversion of methane in reforming
 - Conversion of CO in shift reaction
 - Capture of CO₂ from process

Key Points for Guidance – Energy/Process Efficiency

- Energy Efficiency
 - Electrical power requirement
 - Excess HP steam for power/drives/LP steam
 - Oxygen additional power demand
- Water
 - availability/quality
 - raw material and cooling
- Feed gas
 - S and higher HC content
- Hydrogen product
 - Inerts
- Carbon dioxide
 - Specification for pipeline/storage
 - Delivery pressure

Key points for Guidance – Processes with post-combustion capture

- Solvent selection, reflect the balance between CO₂ capture performance, associated energy requirements and potential atmospheric emissions, such as:
 - Energy requirements
 - Reclaiming potential
 - Potential for reaction with contaminants in flue gas, e.g. NO_x removal.
 - Potential atmospheric emissions of solvent and associated degradation products such as nitrosamines and nitramines.
 - Proven performance through operational experience, or test programmes under realistic operating conditions.

• Atmospheric emissions, considering:

- Emissions of solvent components.
- Emission of additional substances formed in the CO₂ capture system such as nitrosamines, nitramines and ammonia.
- Emission of ammonia present in flue gas though slippage from upstream NOx removal.
- Formation of further additional substances in the atmosphere from those emissions.

Key Points for Guidance- Emissions to Air

Continuous

- Fired heater / steam boiler flue gas
 - Hydrogen rich / low carbon fuel
 - NOx formation potential need for abatement
- Steam vents e.g. deaerator

During start-up, abnormal conditions

- Flare combustion products
- CO₂ vent from amine regeneration tower

Key Points for Guidance- Emissions to Water

Continuous effluent treatment discharges

- Process condensate
 - Containing e.g. methanol, ammonia, CO₂
 - Downstream of CO shift
 - From CO₂ compression / dehydration regeneration
- From air dehydration in oxygen production
- Boiler blowdown
- Cooling tower blowdown (where appropriate)
- Water purge from amine system
 - From regeneration reflux, containing e.g. methanol
 - From water wash
- Potential for water treatment for reuse

Key Points for Guidance - Waste Streams

• Liquids

- Demineralised water production reject stream
- Amine solvent e.g. from bleed / feed, replacement
- Dehydration solvent e.g. in case of tri-ethylene glycol dehydration
- Amine reclaimer residue

Solids

- Depleted catalyst material
 - Hydrogenation, reforming, CO shift
- Spent adsorbent materials
 - Gas treatment, dehydration, hydrogen purification
- Solids from amine filtration
- Soot (POX process)

Key Points for Guidance - Monitoring

- Emissions to Air NO_x, CO, SO₂, NH₃, amines/degradation products
- Emissions to Water NH₃, amines, methanol
- CO₂ capture performance
- Process performance energy efficiency, solvent performance

Next Steps

- BAT review complete.
- BAT guidance subject to final regulatory confirmation
- Guidance to be published on .gov.uk
- BAT review will be referenced
- BAT review available on request

Published BAT Guidance and BAT Review for Post Combustion CCS

- Summary of BAT Guidance for New-Build and Retrofit Post-Combustion Carbon Dioxide Capture Using Amine-Based Technologies for Power and CHP Plants Fuelled by Gas and Biomass as an Emerging Technology under the IED for the UK
- <u>https://www.gov.uk/guidance/post-combustion-carbon-dioxide-capture-best-available-techniques-bat</u>
- BAT Review for New-Build and Retrofit Post-Combustion Carbon Dioxide Capture Using Amine-Based Technologies for Power and CHP Plants Fuelled by Gas and Biomass as an Emerging Technology under the IED for the UK
- <u>https://ukccsrc.ac.uk/best-available-techniques-bat-information-for-ccs/</u>
- IChemE Webinars BAT for post combustion CCS John Henderson, EA
 - BAT for 'Blue' Hydrogen Production with CCS Jane Durling, EA
- ESIG Webinar archive IChemE

Future BAT Guidance

- BAT guidance for Hydrogen Production by Electrolysis
- Ongoing work to support post-combustion CCS
 - Improved modelling of atmospheric chemistry of amine releases
 - Certified monitoring methods
 - Develop more EALs for amine solvents & degradation products
 - Decarbonisation clusters and multiple sources of amines
- Other BAT guides to support Net Zero delivery
- Other BAT guidance needed?

How does BAT fit with the UK's Hydrogen Strategy?

- Advising as part of the HAC Standards and Regulations WG
- Identify any interactions with current
 environmental regulations
 - e.g. CO₂ equivalent accounting method
- UK hydrogen strategy GOV.UK (www.gov.uk)
- <u>Designing a UK low carbon hydrogen</u> <u>standard - GOV.UK (www.gov.uk)</u>
 - Consultation on standard now closed

Any Questions?

Email: jane.durling@environment-agency.gov.uk

Appendices for Reference

Recent US paper on carbon intensity of 'blue' hydrogen production

	Howarth & Jacobson	UK: domestic gas	UK: US LNG	
Leakage rate from production and delivery	3.5%	0.5%	3.5%	
Upstream CH4 emissions	1.11	0.1	1.11	gCH ₄ /MJ H ₂
Global warming potential (GWP)	86	28	28	
Upstream emissions	102	3	31	gCO_2e/MJH_2
SMR plant efficiency with CCS	56%	79% [*]	79% *	MJ H ₂ /MJ CH ₄
CO2 capture rate	62%	95%*	95% *	
CO2 released from the SMR to the atmosphere	33	3	3	gCO ₂ /MJ H ₂
Total emissions	135	7	34	gCO ₂ e/MJ H ₂
Emissions from the UK residential sect	tor			
Residential natural gas use		58	88	MtCO ₂ e
If blue hydrogen replaced all natural gas		7	36	MtCO ₂ e

* JM LCH[™] process

* UK TIMES energy system model

Data on slide courtesy of Paul Dodds, UCL

Equilibrium reactions (BAT review)

Table 15 – Steam Methane Reforming and Shift Chemical Reactions

Chemical Reactions					
Steam Methane Reforming	CH ₄ + H ₂ O _(g) \rightleftharpoons CO + 3 H ₂	ΔH_{298} = 206 kJ/mol			
Water Gas Shift	$\text{CO} + \text{H}_2\text{O}_{(g)} \rightleftharpoons \text{H}_2 + \text{CO}_2$	ΔH ₂₉₈ = - 41 kJ/mol			
Overall Reaction *	CH ₄ + 2 H ₂ O _(g) ≓ CO ₂ + 4 H ₂	ΔH ₂₉₈ = 165 kJ/mol			

Table 16 – Autothermal Reforming and Shift Chemical Reactions

Chemical Reactions					
Methane Partial Oxidation	$CH_4 + \frac{1}{2}O_2 \rightleftharpoons CO + 2H_2$	ΔH ₂₉₈ = -36 kJ/mol			
Steam Methane Reforming	CH ₄ + H ₂ O _(g) \rightleftharpoons CO + 3 H ₂	$\Delta H_{298} = 206 \text{ kJ/mol}$			
Combined ATR Reaction *	$CH_4 + \frac{1}{4}O_2 + \frac{1}{2}H_2O_{(g)} \rightleftharpoons CO + \frac{5}{2}H_2$	ΔH_{298} = 85 kJ/mol			
Water Gas Shift	$\text{CO} + \text{H}_2\text{O}_{(g)} \rightleftharpoons \text{H}_2 + \text{CO}_2$	ΔH ₂₉₈ = - 41 kJ/mol			
Overall Reaction	$CH_4 + \frac{1}{4}O_2 + \frac{3}{2}H_2O_{(g)} \rightleftharpoons CO_2 + \frac{7}{2}H_2$	$\Delta H_{298} = 44 \text{ kJ/mol}$			

Table 17 – Partial Oxidation and Shift Technology Chemical Reactions

Chemical Reactions				
Methane Partial Oxidation	$CH_4 + \frac{1}{2}O_2 \rightleftharpoons CO + 2H_2$	∆H ₂₉₈ = -36 kJ/mol		
Water Gas Shift	$CO + H_2O_{(g)} \rightleftharpoons CO_2 + H_2$	ΔH ₂₉₈ = -41 kJ/mol		
Overall Reaction	$CH_4 + \frac{1}{2}O_2 + H_2O_{(g)} \rightleftharpoons CO_2 + 3H_2$	∆H ₂₉₈ = -77 kJ/mol		

Steam Methane Reforming Process

Block Flow Diagram of SMR Technology with Carbon Capture (Typical – Other Configurations are Possible)

Autothermal Reforming Process

Block Flow Diagram of ATR Technology with Carbon Capture (Typical – Other Configurations Possible, e.g. with Addition of Gas Heated Reformer)

Gas Heated Reforming Process e.g. GHR+ATR in series

ATR Product Gas

Gas POX (Partial Oxidation) Process

Block Flow Diagram of POX Technology with Carbon Capture (Typical – Other Configurations are Possible)

