Carbon Dioxide Pipelines for CCUS
UKCCSRC Webseries, March 2021

James Watt, Hydrogen Consultant, UK
Safety Moment

— Golden rules (Air Products)
— Stay away from the cloud
— CO2 monitors
 — Usual industry rules apply
 — Usual pipeline rules apply
 — Very different substance
 — Different release characteristics
 — Different physical characteristics
 — Different material needs
 — Don’t necessarily apply what has been done before
What is CCS “Infrastructure”?
What is a full CCS “Chain”?
US Pipelines
c. 6000km natural and anthropogenic sources
Existing Pipelines – a sample

<table>
<thead>
<tr>
<th>Pipeline</th>
<th>Location</th>
<th>Length, km</th>
<th>Capacity, Mt/y</th>
<th>Pressure bar / Diameter mm</th>
<th>Year Complete</th>
<th>Origin of CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cortez</td>
<td>USA</td>
<td>808</td>
<td>24</td>
<td>186 / 762</td>
<td>1984</td>
<td>McElmo Dome</td>
</tr>
<tr>
<td>Sheep Mountain</td>
<td>USA</td>
<td>656</td>
<td>11</td>
<td>132 / 610</td>
<td></td>
<td>Sheep Mountain</td>
</tr>
<tr>
<td>Bravo</td>
<td>USA</td>
<td>350</td>
<td>7.3</td>
<td>165 / 510</td>
<td>1984</td>
<td>Bravo Dome</td>
</tr>
<tr>
<td>SACROC</td>
<td>USA</td>
<td>225</td>
<td>5.2</td>
<td>175 / 406</td>
<td>1972</td>
<td>Gasification</td>
</tr>
<tr>
<td>Val Verde</td>
<td>USA</td>
<td>130</td>
<td>2.5</td>
<td>175 / 406</td>
<td>1998</td>
<td>Val Verde Gas Plants</td>
</tr>
<tr>
<td>Bati Raman</td>
<td>Turkey</td>
<td>90</td>
<td>11</td>
<td>170</td>
<td>1983</td>
<td>Dodan Field</td>
</tr>
<tr>
<td>Weyburn</td>
<td>Canada</td>
<td>330</td>
<td>2</td>
<td>204 / 356</td>
<td>2000</td>
<td>Gasification</td>
</tr>
<tr>
<td>Bairoil</td>
<td>USA</td>
<td>258</td>
<td>24</td>
<td></td>
<td></td>
<td>Gas Processing</td>
</tr>
<tr>
<td>Snovhit</td>
<td>Norway</td>
<td>153</td>
<td>0.7</td>
<td>100 / 200</td>
<td></td>
<td>LNG Processing</td>
</tr>
</tbody>
</table>
Where is it done

- +8000km worldwide
- Over 140 million tonnes/year
- Onshore
 - North America
 - EOR
 - Geological sources
 - Anthropogenic sources
 - Algeria
 - EOR
 - Boundary Dam
 - MASDAR
- Offshore
 - Sleipner
 - Snovhit
Phase Diagram

Critical Point
31.1°C, 7391 kPa

Melting Line

Triple Point
-56.6°C, 517.7 kPa

Saturation Line

Sublimation Line

Typical Operating Region,
4-38°C, 8619 - 17250 kPa

Solid

Vapour

Liquid

Supercritical
Typical conditions

- Transport occurs above critical pressure
- 4 – 38°C
- 86 – 172 barg

- Typical Compositions
 - New ISO standard
 - US ranges
 - 95% CO2
 - <250ppmw/w water, no free water
 - <1500ppm w/w H2S
 - <450ppm w/w Total sulphur
 - <4% Nitrogen
 - <5% mole, <-28.9°C dew point hydrocarbons
 - <10ppm w/w O2
Pipeline Compression

— Typically as dense fluid
— Requires compression from low flue gas pressure
— Existing equipment
 — Piston/Positive Displacement
 — Centrifugal
 — Integrally geared
 — Compression + pump
— Requires
 — Dehydration
 — Cooling
Compression – things to watch for

- Basis configuration depends on
 - Flexibility
 - Reliability
 - Vendor data
 - Pipeline specification
 - Parasitic load requirements

- Integration with capture plant

- Dehydration technology
 - Glycol, mol sieve absorbers

- Conditioning
 - In series with dehydration
 - Removal of “marginal” contaminants
Regulations

— US and Canada
 — 49-CFR-195 Transportation of Hazardous Liquid Pipelines
 — 49-CFR-192 Transportation of Natural and Other Gas by Pipelines
 — Z662-07 Oil and Gas Pipeline Systems

— Regulations specify the design code
— 49-CFR-192 is also applied as any release will be gaseous
Regulations UK and the EU

- Pipeline design within current regulations
- Compressors may fall under COMAH/Seveso
- EU Specs
 - EN 14161 Petroleum and Natural Gas Industries – Pipeline Transportation System
- UK
 - BS PD 8010
 - Now includes tighter controls of CO2
- ISO
 - New standards for CCS
- HSE position on Carbon Dioxide
 - Still not clear
 - Apply a precautionary approach
 - Assume a dangerous fluid and dangerous substance
Standards

EN 14161
API 620, 650
ASME B16.9, B31.3
Section VIII Division 1
MSS SP-44-1996
ASTM A193/A193M, A194/A194M

BS 3293, 3518, 3974, 4515-1, 4515-2, 4882, 6651, 7361-1, 4515-2, 4882, 6651, 7361-1, 7910
EN 287, 288, 10204, 10208, 10224, 13480, 60079-10, 60079-14, ISO 3183-3, PD 5500

IEC 60079-10, 60079-14
ISO 3183-3
PD 5500

API 5L, 6A, RP 5L2
ASME B16.5, B16.9, B16.11, B16.20, B16.21, B16.47, B31.3, B31.8, Section VIII Division 1

MSS SP-44
NACE MR-0175
NFPA 30
BS PD 8010:1
General Pipeline Design

- Fluid properties
- Environment
- Effects of Temperature and Pressure
- Design conditions
- Supply and demand magnitude/locations
- Codes and standards
- Route, topography and access
- Environmental impact
- Economics
- Hydrological impact
- Seismic and volcanic impacts
- Material
- Construction
- Commissioning
- Operation
- Protection
- Integrity
Chemical Properties

- Carbon Dioxide + water
 - Carbonic acid
 - Weak acid
 - Acidity increases with temperature and pressure
- Clathrates (hydrates) can form at ambient temperatures and relatively low pressures.

- REMOVE THE WATER!
- Reactions with other treatment process chemicals
Entry Specification

- Specifies
 - What is in the pipeline
 - What is allowed in the pipeline

- Typical concerns around
 - Physical properties
 - Changes in critical point/phase transitions
 - HSE issues of contaminants on release
 - Geologic storage requirements
 - Corrosion
 - Integrity/pipeline design

- Provides reduced variability of fluids in a network
 - Sets part of the design basis for capture plants

- ISO 27913:2016
Constraints of contaminants

- Regulation
- Venting must be safe
- Default position
 - No contaminant may be present at a level that changes the safety and risk parameters of the host carbon dioxide stream
- Chemical
 - Reactions
 - Phase changes
 - Impact on fluid properties (water solubility etc)
- Mechanical issues
 - Corrosion
 - Decompression speed – changes may make integrity more of a challenge.
Flow Assurance

- Pipelines are static equipment
- Operational behaviour driven by outside influences
- Fluid flow must be controlled to avoid damage to storage sites
- Surge flow is not desirable
- Water content must be controlled
- Transient behavior, temps/press need to be understood
- EoS need to be defined and validated
Line pipe

— Steel
 — Stainless for wet service
 — Carbon steel for dry
 — Low temperature carbon steel for venting/blowdown

— Mechanical specification
 — Fracture control
 — Thick wall
 — Fracture (crack) arrestors

— Entry specification
 — Corrosion control
 — Decompression speed
Non Metallic Components

- CO2 penetrates into materials
- Depressuring can result in damage
- Trapped CO2 expands in situ causing;
 - Extrusion
 - Blistering
 - Rapid Gas (Explosive)
 - Decompression
- Affects
 - Valves
 - Seals
 - Gaskets
 - PIGS!
- Industry view of dispersion of CO2
- Sets the risk envelope of the pipeline
- Not like other gases, CO2 is heavy and will slump
Re-using existing infrastructure
Not always new pipelines

- Existing Natural Gas network
 - 30 – 94 bar
 - Not suitable for dense phase
 - Transport of gas is low

- Offshore pipelines are higher design pressures

- Distance offshore is a factor
 - Onshore booster stations can be fitted
 - Offshore boosters would require a platform

- Existing pipelines are aging

- Re-classify a pipeline
 - Re-do all calculations to appropriate standard
 - Inspection and repair
 - Apply new regulations and standards
Re-use of infrastructure

- Can we re-use the existing?
- Consider in projects
 - Longannet – NG NTS Feeder 10
 - Shell Peterhead – Goldeneye
 - ACORN – NG NTS Feeder 10
- Considerations
 - Materials of construction
 - Method of construction
 - Design conditions, particularly the design pressure
 - Routing and its suitability to new fluid
 - Safety and Environmental cases
 - Mitigation measures
 - Age issues, corrosion, inspection
 - System pressure
SUMMARY

- Pipelines a mature part of the chain
- Compression and pumping also proven
- Still some work to do in the context of CCS
Thank you!

James Watt
WSP
james.watt@wsp.com