Beyond 90% capture – feasible, but at what cost?

Patrick Brandl1,3, Mai Bui1,3, Jason P. Hallett2, Niall Mac Dowell1,3*

1Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
2Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
3Centre for Environmental Policy, Imperial College London, South Kensington Campus, London SW7 1NE, UK
* E-mail addresses: patrick.brandl16@imperial.ac.uk and niall@imperial.ac.uk

Timeline: Ubiquitous assumption of 90% cap

The concept of CCS was first proposed in 1977 and early studies assessed capturing up to 90% of CO₂ contained in flue gas. This number has since been become ubiquitous without thorough techno-economic optimisation.

- 1.5°C target makes capture rates >90% cap necessary but at what cost?
- Access to cheap capital is crucial to move towards zero-carbon power plants.

Impact of capital recovery factor

The Capital Recovery Factor CRF significantly impacts the capture cost (shown for a gas- and coal-fired case). It is vital to provide access to cheap capital by policy frameworks to move towards zero-carbon power plants.

Effect of scale and CO₂ concentration

The impact of CO₂ source plant size expressed as flue gas flowrate and CO₂ concentration on the capture costs using 30wt% aq. MEA are shown below. Typical power plant and industrial flue gas compositions are highlighted. Capturing CO₂ from dilute streams e.g., gas power, is significantly more expensive than from higher concentrated streams e.g., iron or steel plants. Economy of scale reduces the specific costs for small plants < 100 kg/s.

- Capturing CO₂ from dilute streams is significantly more expensive
- Economy of scale significantly drives costs down only for small plants

Modelling framework

Schematic flow of information and calculation of key characteristics from input (Excel), equation based process model (gPROMS) [1] and output (Excel). The framework has been designed to provide the user with a live feedback as the model is running.

Impact of capture rate on cost

Non-linear trend between CO₂ composition, capture rate, and Total Annualised Costs TAC is driven by economy of scale versus diluting the residual CO₂ to be captured. Marginal cost indicates nearly constant cost <95% cap, and significant increase >98% cap. Table shows capture rate at minimum and range of low TAC.

<table>
<thead>
<tr>
<th>Flue Gas</th>
<th>min TAC ($/tCO₂)</th>
<th>% cap at min TAC</th>
<th>% cap range of low TAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas-fired, $X_{CO₂}$ = 4%</td>
<td>62.5</td>
<td>75</td>
<td>74-85</td>
</tr>
<tr>
<td>Gas-fired with EGR, $X_{CO₂}$ = 8%</td>
<td>42.5</td>
<td>68</td>
<td>< 94</td>
</tr>
<tr>
<td>Coal-fired, $X_{CO₂}$ = 12%</td>
<td>38.5</td>
<td>76</td>
<td>< 96</td>
</tr>
</tbody>
</table>

- Cost minimum is not at capture rate of 90% cap
- Capturing of up to 96% cap (coal) at low marginal cost possible
- Marginal cost of capture at rates beyond 98% cap is very high

Conclusions

1. Capture rates >90% are feasible, with a reasonable cost increase up to a capture rate of e.g., 94%. This unlocks significant capture capabilities, e.g., sequestering an additional yearly 0.13 Mt CO₂ from one coal-fired power plant.
2. Capturing CO₂ from dilute streams e.g., gas fired power plants, is significantly more expensive than from higher concentrated streams e.g., iron or steel plants. Solvent development needs to particularly address low CO₂ sources e.g., gas power.
3. Near-zero emissions from fossil-fuelled power plants possible at low marginal cost up to 98% cap.

References and acknowledgements

The authors gratefully acknowledge the financial support from the UKCCSRC (Grant No. UKCCSRC-199), Canada’s Oil Sands Innovation Alliance (COSIA), and the Abu Dhabi Petroleum Institute.