Call 1 - CCI Projects

This project will produce and disseminate the first design and operating guidelines for the flexible operation of CCS pipeline networks. The research will explore how CCS pipeline networks can react effectively to short, medium and long term variations in the availability and flow of CO2 from capture plants, as well...

Principal investigator(s): 
B. Wetenhall
Lead institution: 
Newcastle University

This project will develop and experimentally validate a heterogeneous flow model for predicting the transient depressurisation and outflow following the puncture of dense phase CO2 pipelines containing typical impurities. Such data is expected to serve as the source term for the quantitative consequence failure assessment of CO2 pipelines including near...

Principal investigator(s): 
H. Mahgerefteh
Lead institution: 
University College London

This project will determine the dew point of water, or "water solubility", in impure CO2 mixtures (e.g. containing N2 and H2). At present, key data for defining water levels have not been determined. The data are important because liquid water is highly acidic in the presence of excess CO2; this...

Principal investigator(s): 
M.W. George
Lead institution: 
University of Nottingham

This project will tackle one of the key technical challenges facing the development of commercially viable CO2 transport networks: modelling the phase behaviour of impure carbon dioxide, under the conditions typically found in carbon capture from power stations, and in high-pressure (liquid phase) and low-pressure (gas phase) pipelines. Models for...

Principal investigator(s): 
R.S. Graham
Lead institution: 
University of Nottingham

A key element of risk assessment for the geological storage of CO2 offshore is the monitoring of transport of leaks from the subsurface via shallow sediments in the marine environment, including its effect on the ecosystem. In 2012, the NERC-funded QICS project constructed the first marine in situ controlled sub-seabed...

Principal investigator(s): 
M. Naylor
Lead institution: 
University of Edinburgh