Screening and selection of sites for CO2 sequestration based on pressure buildup

This paper presents a simple methodology for estimating pressure pressure buildup due to the injection of supercritical CO2into a saline formation, and the limiting pressure at which the formation starts to fracture. Pressure buildup is calculated using the approximate solution of Mathias et al. [Mathias, S.A., Hardisty, P.E., Trudell, M.R., Zimmerman, R.W., 2009. Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Transp. Porous Media. doi:10.1007/s11242-008-9316-7], which accounts for two-phase Forchheimer flow (of supercritical CO2 and brine) in a compressible porous medium. Compressibility of the rock formation and both fluid phases are also accounted for. Injection pressure is assumed to be limited by the pressure required to fracture the rock formation. Fracture development is assumed to occur when pore pressures exceed the minimum principal stress, which in turn is related to the Poisson’s ratio of the rock formation. Detailed guidance is also offered concerning the estimation of viscosity, density and compressibility for the brine and CO2. Example calculations are presented in the context of data from the Plains CO2 Reduction (PCOR) Partnership. Such a methodology will be useful for screening analysis of potential CO2 injection sites to identify which are worthy of further investigation.