Versatile Adsorption Processes for the Capture of Carbon Dioxide from Industrial Sources – FlexICCS

Research challenge – The key challenges in carbon capture from industry lie in the wide range of conditions (temperature, pressure, composition) and scale of the processes encountered in industrial applications. For carbon capture from industrial sources the drivers and mechanisms to achieve emissions reductions will be very different from those of the power generation industry. It is important to consider that for example the food and drinks industry is striving to reduce the carbon footprint of the products we purchase due to pressures from consumers.

The practical challenge and the real long term opportunity for R&D are solutions for medium to small scale sources. In developing this project we have collaborated with several industrial colleagues to identify a broad range case studies to be investigated. As an example of low CO2 concentration systems we have identified a medium sized industry: Lotte Chemicals in Redcar, manufacturer of PET products primarily for the packaging of food and drinks. The plant has gas fired generators that produce 3500 kg/hr of CO2 each at approximately 7%. The emissions from the generators are equivalent to 1/50th of a 500 MW gas fired power plant. The challenge is to intensify the efficiency of the carbon capture units by reducing cycle times and increasing the working capacity of the adsorbents. To tackle this challenge we will develop novel amine supporting porous carbons housed in a rotary wheel adsorber. To maximise the volume available for the adsorbent we will consider direct electrical heating, thus eliminating the need for heat transfer surfaces and introducing added flexibility in case steam is not available on site.

As an example of high CO2 concentrations we will collaborate with Air Products. The CO2 capture process will be designed around the steam methane reformer used to generate hydrogen. The tail gas from this system contains 45% v/v CO2. The base case will be for a generator housed in a shipping container. By developing a corresponding carbon capture module this can lead to a system that can produce clean H2 from natural gas or shale gas, providing a flexible low carbon source of H2 or fuel for industrial applications.

Rapid cycle adsorption based processes will be developed to drive down costs by arriving flexible systems with small footprints for a range of applications and that can lead to mass-production of modular units. We will carry out an ambitious programme of work that will address both materials and process development for carbon capture from industrial sources.